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Motivation



WEISFEILER-LEHMAN TEST

Figure 1: An
illustration of the 1-WL
test. Image is from M.
Bronstein’s blog 1.

1-WL test [22] is a simple algorithm to determine if two graphs are
not isomorphic.

c(t+1)
v = HASH

(
c(t)v ,

{{
c(t)w | w ∈ N (v)

}})
1https://towardsdatascience.com/expressive-power-of-graph-neural-networks-and-
the-weisefeiler-lehman-test-b883db3c7c49
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WEISFEILER-LEHMAN TEST

If two graphs do not have the same histogram, they are not
isomorphic.

However, the converse does not necessarily hold true. There exists a
pair of graphs that are not isomorphic but still have the same color
histogram.

Figure 2: Two non-isomorphic graphs have a similar color histogram. Image
is from M. Bronstein’s blog 1.

1https://towardsdatascience.com/expressive-power-of-graph-neural-networks-and-
the-weisefeiler-lehman-test-b883db3c7c49
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MESSAGE-PASSING FRAMEWORK

Figure 3: Different
types of message
passing. Image is from
M. Bronstein’s blog 2.

Message-passing framework [9] allows us to conceptualize Graph
Neural Networks (GNNs) with propagated information from nodes
along edges.

Vanilla GNNs are proven to be upper-bounded by 1-WL test [22] in
terms of graph expressivity [23].

2https://thegradient.pub/graph-neural-networks-beyond-message-passing-and-
weisfeiler-lehman/
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HIGHER-ORDER MESSAGE-PASSING FRAMEWORK

Figure 4: Lifting a graph to
a regular cell complex and
performing higher-order
message-passing. Image is
from M. Bronstein’s blog 2.

In order to overcome the 1-WL test boundary, prior approaches
incorporate topological structures in the message-passing procedure
[2, 3].

MPSN [3]: Cliques⇐⇒ Simplices

CWN [2]: Cycles or Rings⇐⇒ 2-Cells

2https://thegradient.pub/graph-neural-networks-beyond-message-passing-and-
weisfeiler-lehman/
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RELATION BETWEEN MEMBERS IN A COMPLEX

A higher-order message-passing framework relies on relations that
are not explicitly modeled by the vanilla message-passing
framework.

Definition (Relations between members [2, 3])
For any member σ of K , there are four types of relations:

• Boundary B(σ) = {τ | τ ≺ σ}
• Co-boundary C(σ) = {τ | σ ≺ τ}
• Upper-adjacent neighborhood N↑(σ) = {τ | σ ≺ δ ∧ τ ≺ δ}
• Lower-adjacent neighborhood N↓(σ) = {τ | δ ≺ σ ∧ δ ≺ τ}
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LIMITATIONS

It is clear that we cannot lift graphs to higher-order spaces if certain
substructures do not exist in the graphs.

Figure 5: Examples of graphs without cliques, cycles, or rings.

Key problems:

1. A more generalized color refinement algorithm.
2. Theoretical connections with the current topological color
refinement algorithms.

3. Practically effective and feasible.
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Path Complex



ELEMENTARY PATHS

Definition (Elementary path [12, 13])
Given a finite non-empty set V whose element is called vertex, an
elementary p-path on set V is any sequence of vertices with length
p+ 1. Elementary p-path is denoted by ei0...ip .

Definition (Boundary operator on elementary paths [12, 13])
Boundary operator on elementary p−paths is defined as:

∂ ei0...ip =
p∑

q=0

(−1)qei0...̂iq...ip ,

where îq indicates the removal of the index iq from the sequence
i0...ip.
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PATH COMPLEX

Definition (Path complex [12, 13])
Given a finite non-empty set V , a path complex P is a non-empty
collection of elementary paths such that for any sequence of
vertices that belong to P , the truncated sequences, in which either
the first vertex or the last vertex is removed, are also included in P .

We denote Pp ⊂ P where Pp contains all paths with length p.
Elements of Pp are called allowed elementary p-paths, while any
sequences that do not exist in Pp are called non-allowed
elementary p-paths.
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PATH COMPLEX BASED ON SIMPLE PATHS

DefineSp a space spanned by
all simple paths with length
p.
DefineP a path complex with
the highest dimension p such
that for any dimension k ≤
p, Pk contains all elementary
k-paths that span Sk , and
boundary set of any elemen-
tary k-paths is restricted to
elementary (k − 1)-paths in
Sk−1.
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Figure 6: (a) Original graph; (b)
Simplicial complex, which contains a
2-simplex, 4 1-simplices, and 4
0-simplices, arising from the original
graph. (c) Simple path spaces S2 and S3

corresponding to the path complex
arising from the original graph.
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PATH COMPLEX BASED ON SIMPLE PATHS

(a)

0,2,3,1

10

2 3

0,2,3 1,3,2

0,2

2,3

1,3

0

2

1

3

(b)

0,2,3,1

10

2 3

2,3

0,1

0,2 1,3

0,2,3 1,3,2

0,1,31,0,2

2,0,1,3

1,0,2,3 0,1,3,2

0

2

1

3

Despite its simplicity, the way
we define Path Complex is suffi-
cient to perform color refinement
and generalize other topological
Weisfeiler-Lehman tests.

Figure 7: Examples of path
complexes arising from (a) a simple
path with length of 3 and (b) a ring
with size of 4. Blue arrows
demonstrate upper-adjacent
relations, while orange arrows
demonstrate boundary relations.
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Path Weisfeiler-Lehman Test



THEORETICAL RESULTS

Theorem
PWL is at least as powerful as SWL [3] at distinguishing
non-isomorphic graphs.

Theorem
PWL is at least as powerful as CWL(k-IC) [2] at distinguishing
non-isomorphic graphs.
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THEORETICAL RESULTS

Corollary
PWL is strictly more powerful than WL at distinguishing
non-isomorphic graphs.

Corollary

PWL is not less powerful than 3-WL at distinguishing
non-isomorphic graphs.
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Path Complex Networks



PATH ISOMORPHISM NETWORK

We can achieve maximal expressivity by extending GIN [23] to
topological GNNs.

h(t+1)
σ = MLP(t)UP,p

(
m

(t)
B (σ) ||m(t)

↑ (σ)
)

m
(t)
B (σ) = MLP(t)B,p

(1 + εB)h
(t)
σ +

∑
τ∈B(σ)

h(t)
τ


m

(t)
↑ (σ) = MLP(t)↑,p

(
(1 + ε↑)h

(t)
σ +

∑
τ∈N↑(σ)
δ∈C(σ,τ)

MLP(t)M,p

(
h(t)
τ ||h(t)

δ

))

where σ is an elementary path (simplex for SIN [3] or cell for [2]).

19



TUDATASET BENCHMARKS

Dataset PROTEINS NCI1 NCI109 IMDB-B

PK [18] 73.7 ± 0.7 82.5 ± 0.5 N/A N/A
WL Kernel [19] 75.0 ± 3.1 86.0 ± 1.8 ♦ N/A 73.8 ± 3.9

GSN [4] 76.6 ± 5.0 83.5 ± 2.0 N/A 77.8 ± 3.3 ♦
pathGCN [7] 80.4 ± 4.2 ▲ 83.3 ± 1.3 N/A N/A
PathNN [16] 75.2 ± 3.9 82.3 ± 1.9 N/A 72.6 ± 3.3

SIN [3] † 76.4 ± 3.3 82.7 ± 2.1 N/A 75.6 ± 3.2 •
CIN [2] † 77.0 ± 4.3 83.6 ± 1.4 84.0 ± 1.6 • 75.6 ± 3.7
CAN [10] 78.2 ± 2.0 84.5 ± 1.6 83.6 ± 1.2 N/A
CIN++ [11] 80.5 ± 3.9 ♦ 85.3 ± 1.2 ▲ 84.5 ± 2.4 ♦ N/A

PIN (Ours) 78.8 ± 4.4 • 85.1 ± 1.5 • 84.0 ± 1.5 ▲ 76.6 ± 2.9 ▲

Table 1: TUDataset Benchmarks [17]. The top-3 methods in each benchmark
are denoted by ♦ (1st place), ▲ (2nd place), and • (3rd place). Baselines are
denoted by †.
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ZINC AND OGBG-MOLHIV

Dataset ZINC OGBG-MOLHIV

No Edge Feat. W/ Edge Feat. Test ROC-AUC Val. ROC-AUC

GCN [15] 0.469 ± 0.002 N/A N/A N/A
GAT [21] 0.463 ± 0.002 N/A N/A N/A
GatedGCN [5] 0.422 ± 0.006 0.363 ± 0.009 N/A N/A
GIN [23] 0.408 ± 0.008 0.252 ± 0.014 77.07 ± 1.49 84.79 ± 0.68
PNA [6] 0.320 ± 0.032 0.188 ± 0.004 79.05 ± 1.32 85.19 ± 0.99
DGN [1] 0.219 ± 0.010 0.168 ± 0.003 79.70 ± 0.97 84.70 ± 0.47
HIMP [8] N/A 0.151 ± 0.006 78.80 ± 0.82 N/A
GSN [4] 0.140 ± 0.006 0.115 ± 0.012 77.99 ± 1.00 86.58 ± 0.84
PathNN [16] N/A 0.090 ± 0.004 79.17 ± 1.09 N/A
CIN [2] † 0.115 ± 0.003 0.079 ± 0.006 80.94 ± 0.57 N/A
CIN++ [11] N/A 0.077 ± 0.004 80.63 ± 0.94 N/A

PIN (Ours) 0.139 ± 0.004 0.096 ± 0.006 79.44 ± 1.40 82.41 ± 0.96

Table 2: ZINC [20] and OGBG-MOLHIV [14] datasets. Bold texts indicate the
best performance. Performance on ZINC is evaluated by Mean Squared Error,
while performance on OGBG-MOLHIV is evaluated by ROC-AUC. Baseline is
denoted by †.
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STRONGLY REGULAR GRAPHS

(a) (b) (c) (d)

Figure 8: Failure rate comparison on SRG Families. (a) 3 message-passing
(MP) layers. (b) 4 MP layers. (c) 5 MP layers. (d) 6 MP layers.

[4] found that counting 3-paths in a graph is not sufficient to
distinguish non-isomorphic graphs in the SR experiment, but we
found that message-passing between paths help us distinguish ALL
strongly regular graphs in the experiment.
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