REFERENCES

ZINC & OGBG-MOLHIV

MOTIVATION LIFTING TRANSFORMATIONS

Given a simple graph $G=(\mathcal{V},\mathcal{E})$ with a finite vertex set \mathcal{V} and edge set \mathcal{E} , we can apply lifting transformation such as clique [2] cell [3], or path complex lifting.

Weisfeiler and Lehman Go Paths: Learning Topological Features via Path Complexes

DARTMOUTH ENGINEERING

Quang Truong and Peter Chin Thayer School of Engineering, Dartmouth College

Definition 2. (Grigory'an et al. [1]) Given a finite non-empty set V , a **path complex** P is a non-empty collection of elementary paths such that for any sequence of vertices that belong to P , the truncated sequences, in which either the first vertex or the last vertex is removed, are also included in P .

Prior works on topological higher-order GNNs often depend on assumptions about sub-structures of graphs, such as cliques, cycles, and rings.

Our study presents a novel perspective by focusing on **simple paths**, a universal element in graphs, during the topological message-passing process.

Definition 1. (Grigor'yan et al. [1]) Given a finite non-empty set V whose element is called vertex, an **elementary p-path** on set V is any sequence of vertices with length $p+1$. Elementary p -path is denoted by $e_{i_0...i_p}$.

Theorem 4. PWL is at least as powerful as SWL [2] at distinguishing non-isomorphic graphs.

Corollary 7. PWL is not less powerful than 3- WL at distinguishing non-isomorphic graphs.

(a) (b) (c)

[1] Grigor'yan, A.; Lin, Y.; Muranov, Y.; and Yau, S.-T. 2013. Homologies of path complexes and digraphs. arXiv: 1207.2834 [math] [2] Bodnar, C.; Frasca, F.; Otter, N.; Wang, Y.; Liò, P.; and Bronstein, M. 2021b. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks. In Meila, M.; and Zhang, T., eds., Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, 1026–1037. PMLR.

Theorem 5. PWL is at least as powerful as CWL(k -IC) [3] at distinguishing nonisomorphic graphs.

Corollary 6. PWL is strictly more powerful than WL at distinguishing non-isomorphic graphs.

ILLUSTRATION

TUDATASETS

Figure 1. (a) Original graph; (b) Simplicial complex, which contains a 2-simplex, 4 1 simplices, and 4 0-simplices, arising from the original graph. Regular cell complex coincides with the simplicial complex in this case; (c) Simple path spaces S_2 and S_3 corresponding to the path complex arising from the original graph. Elementary paths of S_0 and S_1 are indeed 0-simplices (0-cells) and 1-simplices (1-cells) of the simplicial complex (regular cell complex).

PATH COMPLEXES THEORETICAL RESULTS

Proposition 3. For any two path complexes X and Y , if $\sigma \in X$ and $\tau \in Y$ have different boundary sizes $|\mathcal{B}(\sigma)| \neq |\mathcal{B}(\tau)|$, their colorings are different $c_{\sigma}^{X,t} \neq c_{\tau}^{Y,t}$ for $t>0$.

Figure 3. Failure rate comparison between CWN and PCN on SRG Families over 10 different seeds. (a) 3 MP layers. (b) 4 MP layers. (c) 5 MP layers. (d) 6 MP layers.

Figure 2. Examples of path complexes arising from graphs.

[3] Bodnar, C.; Frasca, F.; Otter, N.; Wang, Y.; Liò, P.; Montufar, G. F.; and Bronstein, M. 2021a. Weisfeiler and Lehman Go Cellular: CW Networks. In Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances in Neural Information Processing Systems, volume 34, 2625-2640. Curran Associates, Inc.

