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MOTIVATION

Prior works on topological
higher-order GNNs often
depend on assumptions about
sub-structures of graphs, such
as cliques, cycles, and rings.

Our study presents a novel
perspective by focusing on
simple paths, a universal
element in graphs, during the
topological message-passing
process.
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LIFTING TRANSFORMATIONS

Given a simple graph G = (V, £) with a finite vertex set

and edge set £, we can apply lifting transformation such as
clique [2] cell [3], or path complex lifting.
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Figure 1. (a) Original graph; (b) Simplicial complex, which contains a 2-simplex, 4 1-
simplices, and 4 0-simplices, arising from the original graph. Regular cell complex
coincides with the simplicial complex in this case; (c) Simple path spaces Sy and S3
corresponding to the path complex arising from the original graph. Elementary paths
of Sp and S7 are indeed 0-simplices (0-cells) and 1-simplices (1-cells) of the simplicial
complex (regular cell complex).
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Definition 1. (Grigor'yan et al.
[1]) Given a finite non-empty
set V' whose element is called
vertex, an elementary p-path
on set V' is any sequence of
vertices with length p + 1.
Elementary p-path is denoted

Proposition 3. For any two path complexes

XandY, ifoe€ Xand 7 € Y have

different boundary sizes \B(c})\ + |B(1),
t Y

their colorings are different ¢’ Cr ' for
t > 0.

Figure 3. Failure rate comparison between CWN and PCN on
SRG Families over 10 different seeds. (a) 3 MP layers. (b) 4
MP layers. (¢) 5 MP layers. (d) 6 MP layers.
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Theorem 4. PWL is at least as powerful as
SWL [2] at distinguishing non-isomorphic

by €;,...1,-

Definition 2. (Grigory'an et al.
[1]) Given a finite non-empty
set I/, a path complex P is a
non-empty collection of

graphs.

Theorem 5. PWL is at least as powerful as
CWL(k-IC) [3] at distinguishing non-
isomorphic graphs.
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I

elementary paths such that for
any sequence of vertices that
belong to P, the truncated
sequences, in which either the
first vertex or the last vertex is

removed, are also included in Corollary 7. PWL is not less powerful than 3-
P. WL at distinguishing non-isomorphic graphs.

PIN (Ours) 0.139 £0.004  0.096 + 0.006 79.44 £ 1.40 82.41 £0.96

Corollary 6. PWL is strictly more powerful
than WL at distinguishing non-isomorphic
graphs.
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Figure 2. Examples of path complexes arising from graphs.




